G2(q) by the Set of Orders of Maximal Abelian Subgroups
نویسنده
چکیده
Let m be a natural number. It is proved that the simple groups G2(q) where q = 32m+1 and m ≥ 1,is uniquely determined by the set of orders of its maximal abelian subgroups. Mathematics Subject Classification: 20D05, 20D08
منابع مشابه
On the type of conjugacy classes and the set of indices of maximal subgroups
Let $G$ be a finite group. By $MT(G)=(m_1,cdots,m_k)$ we denote the type of conjugacy classes of maximal subgroups of $G$, which implies that $G$ has exactly $k$ conjugacy classes of maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates of maximal subgroups of $G$, where $m_1leqcdotsleq m_k$. In this paper, we give some new characterizations of finite groups by ...
متن کاملMaximum sum element orders of all proper subgroups of PGL(2, q)
In this paper we show that if q is a power of a prime p , then the projective special linear group PSL(2, q) and the stabilizer of a point of the projective line have maximum sum element orders among all proper subgroups of projective general linear group PGL(2, q) for q odd and even respectively
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملFuzzy Subgroups of Rank Two Abelian p-Group
In this paper we enumerate fuzzy subgroups, up to a natural equivalence, of some finite abelian p-groups of rank two where p is any prime number. After obtaining the number of maximal chains of subgroups, we count fuzzy subgroups using inductive arguments. The number of such fuzzy subgroups forms a polynomial in p with pleasing combinatorial coefficients. By exploiting the order, we label the s...
متن کامل2-recognizability of the simple groups $B_n(3)$ and $C_n(3)$ by prime graph
Let $G$ be a finite group and let $GK(G)$ be the prime graph of $G$. We assume that $ngeqslant 5 $ is an odd number. In this paper, we show that the simple groups $B_n(3)$ and $C_n(3)$ are 2-recognizable by their prime graphs. As consequences of the result, the characterizability of the groups $B_n(3)$ and $C_n(3)$ by their spectra and by the set of orders of maximal abelian subgroups are ...
متن کامل